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COUPLED SIMULTANEOUS HEAT AND MASS TRANSFER 

IN MULTICOMPONENT TWO-PHASE MIXTURES 

L. P. Kholpanov, E. Ya. Kenig, 
and V. A. Malyusov 

UDC 536.423.4:532.522.2 

A method is proposed for calculating the parameters of simultaneous heat 
and mass transfer in a multicomponent two-phase gas-liquid system, this 
method being based on solving the system of differential equations of con- 
vective heat transfer and convective diffusion. 

An important item in research concerning heat- and mass-transfer processes is develop- 
ment of a theory for simultaneous heat and mass transfer in multicomponent two-phase mix- 
tures. Particular attention is paid to solution of this problem as a coupled one. 

A method of solving such problems will be outlined here on the example of heat and 
mass transfer in a multicomponent two-phase gas-liquid system which flows through a verti- 
cal channel in the descending parallel-flow mode. 

Let the x axis run along a channel wall and the y axis run perpendiclar to it. The 
thermal diffusivity of each component and the coefficients of multicomponent diffusion are 
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assumed to be independent of the temperature and the concentration at any time [i-3]. We 
will consider the case of steady-state heat and mass transfer with negligible resultant 
diffusional transfer of enthalpy within the volume of phases, with both liquid and gas flow- 
ing at mean rates, and with the parameters of both phases changing much slower in the longi- 
tudinal direction than in the transverse one. We will also assume that the dissipative 
term in the equation of convective heat transfer and thermodiffusional mass transfer can be 
disregarded [4], and that the film thickness changes neither in the longitudinal direction 
nor in the transverse one during the heat and mass transfer process. On this premise, then, 
the system of equations of convective mass transfer and heat transfer is 

Ue OTL -- Xe O"-TL OTG O"-TG 
Ox - - ,  u G ,, = >t G - - ,  

@~ ax ou~ ( 1 ) 

UL OC L O~'CL 0CG O2C G 
Ox = [DL] ' uG = [DO Oy 2 Ox Oy ~ 

The boundary conditions are stipulated in the form of the following relations at the channel 
entrance x = 0 

TL =ToL:, TG=To6: CL=CoL, CG'=CoG, (2) 

at the pipe wall y = 0 

TL==T %, CL=Co L, (3) 

and a t  t he  p i p e  ax i s  y = R 

T G = TeC: , CG= Coo (4) 

At the interphase boundary y = h 0 are satisfied the conditions of phase equilibrium, 
heat balance, and mass balance 

where 

T=TL=TG" (5) 

C_G~ '--m~ C L --}- p~T + p,,, 

qL = %+ '~ J,A~,  L (6) 
i==l 

s , = J L  , = J o ,  i =  l, 2 . . . .  , n. (7) 
rt 

With the aid of the identity ~ ]i-----0, , one can transform condition (6) into 
i= I 

n--| 

qL ~ q G "  -~ ]iAH~,where AHi = A/t~--A/-t~. (8) 
i ~ l  

Using F o u r i e r ' s  law and the  g e n e r a l i z e d  F i c k ' s  law, we o b t a i n  from e x p r e s s i o n s  (7) and (8) 
the  ba lance  r e l a t i o n s  a t - t h e  i n t e r p h a s e  boundary in t he  form 

Z L OTL ~ OTG 0eL (9) 
09 = / ~ G T  + (AH)T [DL ] Oy 

[DL] OCL -- !DG] OCG (10) 
@ 8y 

The matrices [D G] and [DL] in the system of equations (i) contain coefficients of 
molecular diffusion for the vapors of mixture components. Expressions for the elements of 
both matrices can be derived from the molecular theory of gases [i-5]. An important pro- 
perty of these matrices is their reducibility to diagonal form [I] 

[G]-'[DG][G]=~D'G~; ILl ~[DLI[LJ ="D~_.  (11) 
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The system of equations (i) with boundary conditions (2)-(5) and (9)-(10) is a coupled 
system of parabolic equations with boundary conditions of the fourth kind, thus a rather 
difficult one to solve. We therefore utilize properties (ii) of the matrices [DG] and [D L] 
and transform the original system of equations into 

c~T L O'-T L OT G _ O~TG 
-- • ' UG •  

UL Ox Og ~ Ox O f  

UL OX -- rOL-~ Oy - - T - '  '' llG OX = =  =DG~ c)f  ' 

with 

At x = 0 we have 

where C'0L = [L]-ICoL, C' 

At y = 0 

Aty=R 

At y=h 0 

EL = [L/- 'EL;  ( ~ :  [GI-'CG'" (13) 

T L = T o L ~  T G = T O O  , 

oG = [G]-• �9 

C L = COL., C'~= Coc,, ( 1 4 )  

r L = ToL , C L = COL .. 

TG .... Toc-, CG= CoG- 

(15) 

( 1 6 )  

where 

[R21 =DL_~ ~ = 

T L : T  G =  T, C'G=[RI]C L + p I T @ p ~ ,  

�9 OTL " OTG @ rT OCL OC'L 
Oy ~DG~ Oy ' Oy -- ~oOy " OF 

Pl = [61-~P ,; P~ = [Ol- 'p2;  r r = ( A H ) T I D  L] [L]; 

[RII = [O] -1 ~rn_~ IL]; JR2] = [Ol - i  [L]. 

(17) 

(18) 

Let Yl --- Y in the 0 < y < h 0 range and Y2 - Y in the h 0 <_ y <_ R range, whereupon we 
introduce dimensionless coordinates nl and ~2 according to the relations 

Yl R -- y,, ~h = 1 , ~2 = 1 
ho R -- ho 

Then the system of relations (12)-(17) finally becomes 

OT L a'2Te OT G O"T G 
Ox - -  '~TL 01]] 0X ~TG" 0117: 

acL O CL o c'G ( 1 9 )  

where 
XL . • DLi /-)Gi 

YTL--  ~;.h~ ?zG= ; "L ----; ~ - -  --  -- " ' U~ (R  - -  ho)'-' ~ ~ ~ 1r Llz~ u6R--/Io) ~ 

At x = 0 we have 

at ql = 1 

T L = T o L ,  T G = T o  G , C L =  CoL, CG=- Co6, 

T L = T o L ,  C L -  CoL , 

(2o) 

(21) 
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atq2 = 1 

.... ToG, c; G, 

and at Nl = q2 = 0 

T L = r G . T, CG= [R, IC L -~. p IT-+  pj, ( 2 2 )  

OTG _ R - - h o  ZL OT_~_q R--ho rT oc~ ( 23 )  
~'~ &h ho 6'~1 ho Oql ' 

R--ho oe L 
- ~  - -  i h o - - [ R . > ]  " - ~ . ,  aq 1 . (24) 

We will solve Eqs. (19) in the boundary-layer approximation, assuming that the main changes 
in concentrations C'Li, C'Gi and temperatures TL, T G of components occur within layers ad- 
jacent to the interphase boundary, considering also that those functions are bounded 

to l  [s 

T L = a, + o, .1' exp ( - - ~ ' )  dW, T G = a, + b, .!" exp ( - - T ' )  dT,  
0 O 

where 

Zl i z2i 

CLi =Ali -1- BI, j' exp (--11*') da{ y, CGi-- A2i § Bz, .! exp ( - - T ' )  dT.  
o o 

(25) 

~V i -- .-__; ~,,-- .__; Zli-- .-- ; 
2 V ~TLI 2 V '~TGX 2 i ~L~. X 

Z.,-- ~I'2-.-L---; i = I ,  2, . . . ,  n - - 1 .  
2 I/ TGiX 

F o r  d e t e r m i n i n g  t h e  i n t e g r a t i o n  c o n s t a n t s  a z ,  a= ,  b z ,  b2 ,  A~ i ,  A=i ,  B~ i ,  B 2 i ,  we w i l l  u s e  
i n i t i a l  and b o u n d a r y  c o n d i t i o n s  ( 2 0 ) ,  ( 2 2 ) - ( 2 4 ) ,  c o n s i d e r i n g  t h a t  

1/-7 1/- 2 - ToE = ax § bl 2 ' ToG= a2 § b,~ , 

V V C o L = A I I L  B1 , Co:G=A,,-~-B 2 , 

a~ = a., = a, A2 = [Rd A1 § P;a -r PJ, 

(26) 

bz UL [rabl-- qrrc~-O" ~-~ ' B,, = - -  [RalB,, = -- t L -'! l J, . -~- (27) 

where 

ra = V~-L- - ;ZC  ra - - - ' s  C [Ra] = ( " D ~ )  - ~  [Rel ( "DLJ)  ~ 

I , by v i r t u e  o f  t h e  a s s u m p t i o n s  r e g a r d i n g  t h e  f u n c t i o n s  C Lz ,  C ' G i ,  TL, TG" 
t h e  s y s t e m  o f  a l g e b r a i c  s c a l a r - v e c t o r  e q u a t i o n s  ( 2 5 ) - ( 2 7 )  w i l l  be  o b t a i n e d  i n  t h e  f o r m  

d u e  ~x~(:_D~)_o.~ i o l ( g +  plVoL + p,_;)+ aVo 
2 u G 

1 ~-r J uL r~.r~(~-OL=)-~ 
t~ G 

2 V-.7- 
b.,. = b 1 i/..~--. ATo, a 1 = a.,. ~:: To L 2 bl' 

(28) 

The solution to 

(29) 
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B, :-: [(--)l { 2 (~ ' " p~,) p~bj } Be . . . .  /~ UL 
V ~ -r P,To L -~ -- , ~/ W 

A, .... CoL 1 / " ~  2 B,, A., -:: Co G- V' - 2 B.,, 

[Ra ]B1, 

(30) 

where 

~p = us_  uG r a + 1 " AT o ::.To L -Toc;  

/ UL \--I -~ ( 3 1 )  

Expressions (29)-(31) together with expressions (25) make it possible to determine the tem- 
peratures TL, T G and to convert the concentrations C' L, C' G for any values of the coordinates. 

It is now necessary to change back to real values of concentrations CL, C G. Such a tran- 
sition can be made with the aid of relations (13). 

We introduce the notation 

Sr L (X, qi) = j" exp (--.~F ~) d~', 
0 

z l i  

ss ,1,)== .t" ~xp(-~)dv, ~ ( . ,  .~)= 
0 

Then e x p r e s s i o n s  ( 2 5 )  w i t h  t h e  a i d  o f  n o t a t i o n  ( 3 0 )  become 
g 

re (x, %) = ToL + ( ST:L (x, q~) r '  ~ 

~2 

SrG( x, q2) = f exp (--~F ~) d~ ,  

z2i 

i" exp (--1F~) d'F. 

" - -  ) b,, ( 3 2 )  

TcCx, q~) = ToG + S~(x ,  q~) I ~ ) 
2 b2, ( 33 )  

cL (x, n,) = c~L + (~sL v 
\ (34) 

Now using r e l a t i o n s  (13) we obta in  from express ions  (34) and ( 3 5 )  

( �9 ) 
C.L = ILl C~, = CoL + [SL (x, |h)] ] :~ - I  [Li g;. 

�9 2 -- 

(35) 

(36 )  

. . . . . . .  ) 

Cc--[GI  s == Co G +  [So(x, q2)] ~,' rt - I ,  [G]B.,, 
2 

where 

[,e L (x, q0I : [LI~-SL._ [Ll-q [Sc(.v, q_~)I = [GI-So_ [Gi-'- 

Upon performing the transformations 

ILIB --:ILJl-o. (Ior I<t{ 2 2 
~/- ~ " }/ :~ - -  [ml (ACo)r, 

(37) 

(38) 
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[G] 8., :: - -  IGI - ~  ( ' -m,  [q.)l - - '  I , )  (ACo)T, 

where 

1 / I /  2 UL tZL [%]--0.5 =: IRa] B1 = - -  ~ - G  IDL]~ ILl B 1 l" a: 

[DG]-O. 5 [DL]O. a _~_ 

(AEo) T ...... " m ~ E o L -  CoG ~ P~To L ~ P_~ 

~-m_,)-l; 

F " a  
2 Pzbl' ( 3 9 )  

and inserting the result into expressions (36) and (37), we obtain 

2 lSe  (x, n0] - -  F I  ) [O] (ACo)r, C L (x, ~h) = Co L -[- i/.----~ 

q3( x, n2) : :  Co~-~- [S t (x ,  ~ ) ] - -  _, ( rm= [ O ] - -  FI ,) (ACo)r. 

An a n a l o g o u s  p r o c e d u r e  w i l l  r e d u c e  e x p r e s s i o n  ( 2 9 )  t o  

V UL 1I" • ( A H ) r [ D L ] O . 5 [ @ ] ( ~ - m = C o h _ C o c + p l T o L  +p..)q_ATo 
2 uG ~o 

b~ = Y - 7  (p - 
V u g V • (&H) [DL]~ ] p~ 

I + q~ u c s  

(40) 

(41) 

(42) 

and thus to one not containing intermediate quantities, more convenient for direct calcula- 
tions. 

The obtained expressions (32)-(33) and (40)-(41) make it possible, therefore, to deter- 
mine the temperature fields and the concentration fields in both liquid and gaseous phases, 
namely the temperature and the concentration at any point (x, nl) or (x, D2) in the regions 

x ~ 0 ,  0 !n~ ! i, 0 iq2 if. 

Knowing both temperature and concentration distributions in each phase, one can deter- 
mine heat and mass fluxes of the mixture components at the interphase boundary. For this 
purpose one has to differentiate expressions (32) and (34) at the point ql = O, which yields 

OT L ~, :=_ b, OCL----~ ,h = o = - B, ,  i ~  1, 2, . . . ,  n - - l .  
&h :: o 2 I' 7T Ifl O'r 2 V yL ~): ' 

Then the heat flux is 

~L /|//-. t/L bl ' 
q = 2 y • x 

and the mass flux is 

with B I and b I defined by expressions (30) and (42), respectively. 

A change to real fluxes J, with the aid of the obtained expression (38) for [L]B I 
yields 

V ~x [DLI ~ [(l)] (ACo)r, 

with [~] and (AC0) T defined by expressions (39). 

Equivalent expressions for the fluxes can be obtained also from Eqs. (33) and (40) 
for the gaseous phase. 
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NOTATION 

T, temperature of the mixture; C, vector of molar concentrations of the mixture compo- 
nents; C', vector of concentrations converted according to relations (13); [D], matrix 
of multicomponent diffusion coefficients; F D'], a diagonal matrix of eigenvalues of matrix 
[D]; [G] and [L], fundamental matrices for the gaseous component and the liquid component, 
respectively; k, thermal conductivity; <, thermal diffusivity; q, heat flux; J, vector of 
diffusion fluxes of the mixture components; [mj, Pl, P2, parameters in the equilibrium re- 
lation (5); AHi, difference between molar enthalpies of the i-th component in the gaseous 
phase and in the liquid phase, respectively, carried by its mass flux across the inter- 
phase boundary; n, number of mixture components; h0, thickness of the liquid film; R, pipe 
radius; u, velocity of the phases in directional motion; t, x, y, space coordinates; D1,q2, 
dimensionless coordinates; and [I] , unit matrix. Subscripts i refers to the i-th compo- 
nent; L, liquid phase; G, gaseous phase; and 0, value of a quantity at the boundary. 
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CRITERION FOR THE BREAKUP OF LIQUID DROPS AND JETS 

V. B. Okhotskii UDC 532.529 

The conditions of the breakup of liquid drops and jets are determined using 
wave theory. 

The breakup of liquids is accomplished pneumatically, in particular, for the intensifi- 
cation of physicochemical processes in engineering. The mechanism of this process has been 
studied in many investigations, much of which has been systematized in [1-3]. It has been 
established that irregularities of the wave type develop on the surface of a liquid with 
the motion of a gas stream relative to it. These travel and increase in size, separating 
from the liquid surface and being converted into drops of smaller size than the initial 
volume of liquid. Since no significant difference in the conditions of liquid breakup is 
noted with variation of the position of the gas-liquid interface in space, it can be as- 
sumed that the waves have a capillary nature, and the theory of the development of these 
waves at a gas-liquid interface [4] can be used. 

Let us assume that capillary waves develop on the surface of a volume of liquid at its 
frontal point when a gas stream impinges on it. Their amplitudes grow with time and over 
the period Tg r they become comparable with the wavelength ~ ~ k, and according to [4] this 
leads to separation of the wave from the surface of the liquid, i.e., to the breakup of its 
original volume. Since the waves move over the surface of the volume of liquid, it is ob- 
vious that such breakup becomes possible if the growth time of at least one wave is less 
than the time Tmo of its motion over the surface of the volume. On the other hand, it is 
necessary that the length of at least one wave be less than the characteristic size ~ of the 
volume of liquid being broken up. 
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